The 99 Tc and 17 O Nuclear Magnetic Spectra of TcO₄⁻ – the First Detailed Report of a 99 Tc Resonance

MALCOLM J. BUCKINGHAM, GEOFFREY E. HAWKES

Department of Chemistry, Queen Mary College, Mile End Road, London, E1 4NS

and JOHN R. THORNBACK*

Department of Chemistry, Chelsea College, Manresa Road, London SW3, U.K.

Received March 26, 1981

Technetium chemistry is currently of considerable interest because of the utility of ^{99m}Tc complexes in diagnostic medicine [1]. Because of the potentially high sensitivity of ⁹⁹Tc magnetic resonance and the lack of published data on ⁹⁹Tc NMR, we have undertaken a preliminary NMR study of this nucleus.

Technetium does not occur in nature, but is produced by either neutron bombardment of molybdenum followed by decay, or fission of ²³⁵U or ²³⁹Pu. The isotope produced in the greates quantities is ⁹⁹Tc $(t_{1/2} = 2.1 \times 10^5 \text{ y})$, which has nuclear spin I = 9/2, a high NMR detection receptivity relative to natural abundance ¹³C of 2134 and a quadrupole moment [2] of $0.34 \pm 0.17 \times 10^{-28}$ m². These properties are comparable with those of ⁵⁹Co on which many studies have been carried out [3]. While there have been no published reports of a nuclear magnetic resonance signal from this isotope, Kidd [3] briefly mentions that the half-height line-width $(\Delta v_{1/2})$ for ⁹⁹Tc in aqueous TcO_4 was 29 Hz. Figgis *et al.* [4] have reported a single ¹⁷O NMR signal from aqueous ¹⁷O-enriched TcO₄ with $\delta(H_2O)$ 749 p.p.m. and $\Delta \nu_{\frac{1}{2}}$ ca. 1150 Hz.

We report here the first detailed characterisation of the TcO_4^- ion by ⁹⁹Tc and ¹⁷O NMR spectroscopy. A sample of 0.55 mCi of NH₄ ⁹⁹TcO₄ dissolved in 2 ml of D₂O gave a single resonance at 90.06 MHz at 9.4 T with $\Delta \nu_{1/2} = 3.0$ Hz (Ξ ca. 22, 508, 304). A single transient gave an excellent signal to noise ratio, (see Fig. 1). The relaxation parameters T₁ and T₂ were measured by the inversion-recovery and CPMG methods respectively and yielded T₁ = 0.13 s, T₂ = 0.10 s. The similarity in these values is expected for quadrupolar relaxation of ⁹⁹Tc and are in excellent agreement with the value for T₂ (0.11 s) estimated from $\Delta \nu_{1/2}$.

The 54.2 MHz natural abundance ${}^{17}O$ NMR spectrum of this sample gave the expected 10 line spectrum (see Fig. 1) by scalar coupling to ${}^{99}Tc$ with

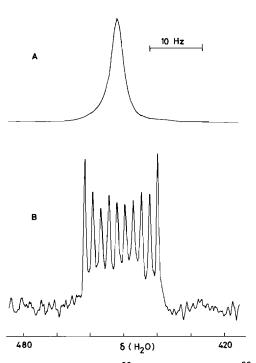


Fig. 1. NMR spectra of ${}^{99}\text{TcO}_{4}^-$; (A) 90.06 MHz ${}^{99}\text{Tc}$ spectrum, single transient; (B) 54.24 MHz natural abundance ${}^{17}\text{O}$ spectrum, 750,000 transients in 34 h. Spectra from the ULIRS WH-400 NMR Service at Queen Mary College.

 ${}^{1}J = 131.6$ Hz. That the outer lines of this ${}^{17}O$ multiplet are sharper than the inner is expected from the finite relaxation rate of ${}^{99}Tc$. The reduced coupling constant K (eqn. 1) fits a previously established [5] correlation with atomic number of metal in the tetrahedral oxoanions MO_{4}^{*-} (see Table I).

$$K_{M^{17}O} = \frac{J_{M^{17}O} 4\pi^2}{h\gamma_M \gamma_{1^7O}}$$
(1)

where γ is the magnetogyric ratio of the nucleus. The inverse relationship between K and atomic number across the periodic table (${}^{51}V \rightarrow {}^{53}Cr \rightarrow {}^{55}Mn$) is reproduced for ${}^{95}Mo$ and ${}^{99}Tc$ and the increase in K with atomic number down the periodic table ${}^{53}Cr \rightarrow {}^{95}Mo$ is reproduced for ${}^{55}Mn$ and ${}^{99}Tc$. No accurate coupling constants are available for ReO_4^- or $WO_4^2^$ but Bank and Schwenk [6] have suggested that $K({}^{183}W{}^{17}O)$ in WO_4^{2-} may contradict this trend.

In one highly symmetric environment 99 Tc therefore gives a very sharp signal but in non symmetrical environments this will be probably be broadened 1 (cf. 59 Co).

The last of well-characterized diamagnetic complexes of technetium, hinders, at present, applications of this technique but with the current interest in this element it seems likely that ⁹⁹Tc NMR will be utilised extensively in the future.

^{*}Author to whom correspondence should be addressed.

TABLE I. Correlation between K $(M-^{17}O)$ and Atomic Number of Oxoanions.

Oxoanion	At. No.	$K/10^{-18}NA^{-2}m^{-2}$
⁵¹ VO ₄ ³⁻	23	14.4 ^a
⁵³ CrO ₄ ²⁻	24	~10.9ª
⁵⁵ MnO ₄	25	~7.35ª
⁹⁵ MoO ₄ ²	42	38.2ª
⁹⁹ TcO ₄	43	35.9

^a From reference 5.

References

- R. W. Thomas, G. E. Estes, R. C. Elder and E. Deutsch, J. Am. Chem. Soc., 101, 4581 (1979); R. W. Thomas, A. Davison, H. D. Trop and E. Deutsch, Inorg. Chem., 19, 2840 (1980), and references therein.
- K. G. Kessler and R. E. Trees, *Phys. Rev.*, 92, 303 (1953).
 R. G. Kidd and R. J. Goodfellow in "NMR and the Periodic Table ', Eds. R. K. Harris and B. E. Mann, Academic Press, London (1978), Ch. 8.
- 4 B. N. Figgis, R. G. Kidd and R. S. Nyholm, Proc. Roy. Soc. A, A269, 469 (1962).
- 5 O. Lutz, W. Nepple and A. Molle, Z. Naturforsch., 31a, 978, 1046 (1976).
- 6 J. Bank and A. Schwenk, Z. Physik, 20b, 75 (1975).